either be coincidental or as a result of adaptability to the semi-arid conditions.

According to the results, body parts of the hosts most commonly affected were wings, vent and breast regions. This may be due to low distribution of feathers, thus easily invaded by the ectoparasites. This also agreed with the findings of Biu et al. (2007). On the other hand, the absence of ticks on neck/head region may be tied to the presence of high feathers cover on the neck and that the areas are not soft and fleshy like the other parts, thus, tissue fluid and blood may not be as available as in the three parts affected.

In conclusion, the result of the study has revealed that Sokoto market poultry section is endemic in terms of ectoparasites infestation, chickens have been found as the most affected and that *Argas persicus* was the most prevalent species. There is therefore the need for control of the ectoparasites.

From the foregoing, the followings are hereby recommended:
1) There is the need for improved management and sanitation of the poultry farms
2) There is the need for frequent use of both chemical and phytotherapeutic (Acharicidal) insecticides as suggested by Shah et al. (2006).
3) There is the need for further and more elaborate research in the area to find more about the ectoparasites.

References

Klebsiella pneumoniae isolated from birds affected by natural outbreaks of highly pathogenic avian influenza (H5N1) in Nigeria

YG Dashe1*, HM Kazeem2, PA Abdu3, M Bello4 and M Odogbo5

1Central Diagnostic Department, National Veterinary Research Institute, Vom. Nigeria
2Department of Veterinary Pathology and Microbiology, A.B.U, Zaria, Kaduna State, Nigeria
3Department of Veterinary Surgery and Medicine, A.B.U, Zaria, Nigeria
4Dept. of Veterinary Public Health and Preventive Medicine, A.B.U, Zaria Nigeria
5Bacterial Research Department, National Veterinary Research Institute, Vom. Nigeria

*Correspondence Author: Tel.: +234 8035778490; e-mail: yakubudashe@yahoo.co.uk

Abstract
A study was undertaken to examine the isolation rate of *Klebsiella pneumoniae* from birds affected by natural outbreaks of highly pathogenic avian influenza (H5N1) that occurred in Nigeria between December, 2006 and July, 2007. A total of 100 birds from 114 commercial, backyard and free range flocks infected with H5N1 virus within the study period were sampled. A total of 600 tissues (heart, lung, spleen, liver, trachea and intestine), 100 each from the 100 birds were collected for bacteriology. Data generated was entered into Microsoft excel, while descriptive statistical analysis was conducted using SPSS (Version 12.01). *Klebsiella pneumoniae* was isolated from 9 (1.5%) samples. The organism was isolated from the liver, lungs and trachea of commercial layers and turkeys. During the HPAI outbreaks, *Klebsiella pneumoniae* was isolated from 9 different flocks with a total of 21,805 birds, mortality rate of (7.3%) and proportionate mortality rate of (2.5%). The bacterium was not isolated from H5N1 free flocks which served as control. The result of this study indicated
that *Klebsiella pneumoniae* may have acted as a secondary pathogen to aggravate the clinical signs during H5N1 outbreaks that occurred in Nigeria.

Key words: Highly pathogenic, Avian influenza, H5N1, *Klebsiella pneumoniae*.

Introduction

Avian influenza also called highly pathogenic avian influenza (H5N1) is a viral disease affecting almost all domestic and wild birds (Easterday et al., 1997; Alexander, 1999). The species of animals affected by HPAI include: the birds, seal, whales, humans, horses and swine (Websters et al., 1992). Avian influenza virus belongs to the Family Orthomyxoviridae which include the Genera influenza A, B and C. The 8 RNA segments of avian influenza A virus encodes for 11 proteins: haemagglutinin (HA), neuraminidase (NA), protein matrix (M1 and M2), non structural protein (NS1 and NS2), RNP, viral polymerase proteins (PB1, PB2, PA, PB1-F2) making the virus antigenic type specific (Swayne, 2003; Yuen, et al., 2006). Presently there are 16 HA and 9 NA subtypes (Fouchier et al., 2005). Avian influenza depresses the host immune system thereby paving way for opportunistic microbes to invade and exert an exacerbative effect resulting in high mortality in affected flocks (Alexander, 2000). About half of the death from avian influenza is believed not to be caused by the avian influenza virus alone, rather from secondary bacterial infections (Armin et al., 2004; Anonymous, 2006). *Klebsiella pneumoniae* is a gram negative bacillus and a late lactose fermenting organism of the Family Enterobacteriaceae. This bacterium is a common saprophyte in many parts of the environment and occasionally causes embryonic mortality and excess losses in young chickens and turkeys (Orajaka and Mohan, 1985). *Klebsiella pneumoniae* has been frequently recovered from birds in which it functioned as a primary pathogen and was associated with respiratory tract disease (Sandru and Duarte, 1998). The organism expresses both smooth lipopolysaccharide with O-antigen and capsular polysaccharide with K-antigen on its surface and both antigens contribute to the pathogenesis of this species. This study was aimed at isolating *Klebsiella pneumoniae* as well as highlighting the possible complicating role of the organism in natural outbreaks of HPAI (H5N1) that occurred in Nigeria.

Materials and Methods

One hundred (100) birds were collected using simple random sampling from 114 commercial, backyard and free range flocks affected by HPAI in the 6 geopolitical zones of Nigeria. A total of 244,992 poultry were sampled. Six (6) samples consisting of heart, intestine, liver, lung, spleen and trachea were collected from each of 100 HPAI affected birds, giving a total of 600 specimens. Samples were collected over a period of eight months between December, 2006 and July, 2007. The presence of H5N1 subtype virus was confirmed by the Viral Research Department of the National Veterinary Research Institute, Vom, Nigeria, using agar gel immuno-diffusion test, viral isolation, haemagglutination inhibition and reverse transcriptase polymerase chain reaction. Similarly, 60 samples consisting heart, intestine, liver, lungs, spleen and trachea were collected from 10 HPAI virus free birds as control. All samples were kept in double transparent polythene bags, labeled and preserved at -700C at the Central Diagnostic Department, NVRI, and Vom. The samples were later transported in a leak proof insulated box packed with ice to the Department of Veterinary Pathology and Microbiology, A B U, Zaria for bacterial isolation and identification.

Bacterial Isolation

Swabs aseptically collected from the heart, lung, liver, trachea and spleen were cultured directly on 7% defibrinated sheep blood agar (BA) and MacConkey agar (MCA). All cultures were incubated aerobically at 370C for 24 h.

Identification of Organisms

Klebsiella pneumoniae isolate on BA and MCA were subjected to various techniques for identification according to the methods of Barrow and Feltham, (2004). Biochemical characterization was done according to standard method described Edwards and Ewings (1986). The biochemical reagents and tests used included: Triple sugar iron agar, urease, Simmons citrate, indole, motility, and Voges Proskauer.

Statistical Analysis

Data generated was entered into Microsoft excel, while descriptive statistical analysis was conducted using statistical package for social sciences SPSS (version 12.01).

Results

From the 600 samples, 9 (1.5%) tissues (obtained from 9 different birds) yielded *Klebsiella pneumoniae* (Table 1). *Klebsiella pneumoniae* was isolated from the liver, lung, and trachea as pure cultures. A total of 224,992 birds were affected by HPAI virus (H5N1) within the period of this study. Of all the bird types and species sampled, the organism was only isolated from 9 different flocks consisting (8 flocks of commercial layers and 1 flock of turkeys) with a total flocks size 21,805 birds, mortality rate of (7.3%) and proportionate mortality rate (Table 2). *Klebsiella pneumoniae* was not isolated from any sample of the HPAI free birds that served as control.

Table 1: Isolation and distribution of *Klebsiella pneumoniae* in tissues of birds affected by HPAI (H5N1)

<table>
<thead>
<tr>
<th>Tissue Samples</th>
<th>Heart</th>
<th>Intestine</th>
<th>Liver</th>
<th>Lungs</th>
<th>Spleen</th>
<th>Trachea</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Isolated</td>
<td>100</td>
<td>100</td>
<td>99</td>
<td>94</td>
<td>100</td>
<td>98</td>
<td>581</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>600</td>
</tr>
</tbody>
</table>

* *Klebsiella pneumoniae* was isolated from 9 different birds affected by HPAI (One organ per bird)
Table 2: Mortality and proportionate mortality rate associated with Klebsiella pneumoniae isolated from flocks affected by HPAI (H5N1)

<table>
<thead>
<tr>
<th>Klebsiella pneumoniae</th>
<th>Affected Flocks</th>
<th>Isolated</th>
<th>Proportional (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolated</td>
<td>9</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Not Isolated</td>
<td>105</td>
<td>97.5</td>
</tr>
<tr>
<td>Total</td>
<td>114</td>
<td>244992</td>
<td>100</td>
</tr>
</tbody>
</table>

Discussion
The role of infectious agents such as bacteria, fungi, mycoplasma and parasites in the complication of viral infections resulting in exacerbative condition and high mortality rate has been reported by Alexander, (2000). In the present study, the isolation of Klebsiella pneumoniae from 9 (1.5%) samples of birds affected by HPAI (H5N1) and none at all from the control birds’ calls for a reassessment of the role of this organism in HPAI outbreaks in Nigeria. The findings in this study as well as that of Kumbish et al 2006, who reported 18% isolation rate of Klebsiella pneumoniae in a similar study conducted in Nigeria underscores the importance of this bacterium during HPAI outbreaks. However, the report of our finding is at variance with that of Lewis (1997), who isolated Escherichia coli in a study conducted on 8,000 nine-week-old Frazer Valley turkeys affected by H5N1 virus, as the only bacterium that complicates avian influenza (H5N1) during the outbreaks. It is most likely that the suppression of immune system in birds affected by AI (H5N1) could have favored the extra-intestinal infections of Klebsiella pneumoniae which accounted for the isolation of the bacterium from the liver, lungs and trachea of birds affected by HPAI virus (Yuen and Wong, 2005; Anonymous, 2006). Klebsiella pneumoniae has a capsule that may prevent the binding of antibodies or complement factors, thus enabling the organism to avoid detection by Neutrophils even in immunocompetent host (Timoney et al., 1988). The capsule hinders phagocytosis, allowing the bacterium to multiply and spread. The high isolation rate of Klebsiella pneumoniae encountered in adult commercial layers and less from turkeys could be attributed to the large sample size obtained from this flock type, since commercial layers were mostly affected during the outbreaks in Nigeria (NADIS/PACE, 2006). The 2.5% proportionate mortality rate (mortality contributed by Klebsiella pneumoniae during HPAI outbreaks) is significant to the poultry industry in Nigeria. Similarly, the 97.5% proportionate mortality rate in Klebsiella pneumoniae free flocks could have been due to H5N1 virus and other unknown secondary agents which were not investigated for in this study. This study has shown that Klebsiella pneumoniae was isolated from flocks with H5N1 during outbreaks in Nigeria between December, 2006 and July, 2007. Most viral infections are exacerbated by secondary bacterial pathogens. It is possible that Klebsiella pneumoniae may have acted in concert with the primary viral infection to produced severe clinical signs during HPAI outbreaks in Nigeria. The role of this organism during natural outbreaks of HPAI (H5N1) needs to be investigated further.

References
Statistical Package For Social Science (SPSS), Version 12.01, Incorporated Chicago United States of America.
Brucellosis outbreak in a flock of seventeen sheep in Zaria

II Onoja1*, AJ Ajani1, WP Mshelia1, A Andrew1, AB Ogunkoya1, CR Achi2 and KW Sambo3

1Department of Veterinary Surgery and Medicine, Ahmadu Bello University Zaria. Nigeria
2Veterinary Teaching Hospital, Usman Danfodiyo University, Sokoto. Nigeria
3Veterinary Teaching Hospital, Ahmadu Bello University, Zaria. Nigeria

*Correspondence Author: Tel.: +2348062261840; e-mail: connections4life@yahoo.com

Abstract
This work is a case report of brucellosis in a flock of sheep in Zaria. The flock comprised of seventeen Yankasa sheep, 14 ewes and 3 rams, with history of 2 recent cases of abortion, a presented case of uterine prolapse and 3 cases of carpal hygroma (1st and 2nd sheep bilaterally and the 3rd sheep left unilaterally). Laboratory experiment was carried out using bacteriological and serological test using blood, vaginal swab and hygromal fluid samples collected aseptically from the flock. No growth on culture, but 13 of 17 (76%) sera samples from the flock were positive by Rose Bengal Plate Test (RBPT) and Serum Agglutination Test (SAT).

The prevalence rate of ratio 1(0.8%) male (ram) to 12(69.2%) female (ewe) was significant (p<0.05) and the overall prevalence rate of 76% was considered to be an outbreak of brucellosis in the flock. This findings has both economic and public health significance.