RESEARCH ARTICLE

Sokoto Journal of Veterinary Sciences

(P-ISSN 1595-093X/ E-ISSN 2315-6201)

Kawe et al/Sokoto Journal of Veterinary Sciences (2016) 14(2): 26-33. http://dx.doi.org/10.4314/sokjvs.v14i2.4

Prevalence of gastrointestinal helminth parasites of *Clarias* gariepinus in Abuja, Nigeria

SM Kawe¹, RO God'spower²*, MR Balarabe¹ & RI Akaniru¹

- Department of Veterinary Parasitology and entomology, Faculty of Veterinary Medicine,
 University of Abuja
- Department of Veterinary Microbiology, Faculty of veterinary Medicine, University of Abuja

*Correspondence: Tel.: +234 7064491628, E-mail: godspowerokoh1985@gmail.com

Abstract

This study was conducted to determine the prevalence of gastrointestinal helminth parasites in Clarias gariepinus with the view of quantifying its helminthic burden in Abuja. The study was carried out in three area Councils of Abuja, Nigeria, between the months of April and August 2015. A total of 83 live fishes (Clarias gariepinus) which includes 28 males and 55 females were randomly purchased from local fishermen and were subjected to examination for gastrointestinal helminth parasites. The lengths and weights of the fishes were measured prior to dissection and the parasites recovered were identified. Results indicated that 56 of the examined fishes were infected with various species of helminth parasites, giving a prevalence of 67.5%. Parasites were identified as Procamallanus laevionchus (32.5%), Rhabdochona congolensis (18.1%), Polyonchobothrium clariae (10.8%), Allocraedium species. (3.6%) and Heterophyid flukes (2.4%). The highest prevalence was recorded for nematodes (50.6%) followed by cestodes (10.8%) and trematodes (6.0%). Worthy of note, was the recovery of Heterophid flukes in this study which have not been previously reported in Nigeria and pose a great zoonotic threat. It was observed that fishes of standard length range of 20- 30cm (82.4%) were more infected than those of 30-40cm (65.0%) and 40-50cm (61.5%). The highest prevalence of infection (78.6%) was recorded in fishes with body weight of 500-600g while the lowest (58.8%) was recorded in fishes with body weight of 600-700g. The males had higher percentage prevalence (67.9%) than the females (67.3%). The result of the study indicated that the association (P<0.05) between the prevalence of infection, sex, length and weight of the host was not statistically significant ($\chi^2 = 0.00289$, 2.24 and 1.55; degree of freedom= 1, 2 and 5 respectively). The helminths recovered were found to parasitize the stomach and intestinal lumen, the latter being more affected.

Keywords: Clarias gariepinus, Gastrointestinal helminths, Length, Prevalence, Sex, Weight, Zoonotic threat

Received: 24-03- 2016 Accepted: 12-07-2016

Introduction

Fish provides a comparatively cheap source of animal protein for man and his livestock and attention is now being focused on fish production, both from natural water and aquaculture (Coche et al., 1994; Khalil & Polling, 1997; Komatsu & Kitanishi, 2015). It is highly priced in Nigeria either as smoked, dried or fresh. Clarias gariepinus (Clariidae, Siluriformes) is generally classified as omnivores or predators feeding mainly on aquatic insects, fish and higher plants debris as reported for catfishes in the River Ubangui, Central African Republic (Micah, 1973; Ahmad, 2014). They have also been found to feed on terrestrial insects, molluscs and fruits. The catfishes utilize various kinds of food resources available in their habitat

(Bruton, 2010). Studies on the biology, nutrition/growth and management of catfish have been carried out (Viveen et al., 1985; Faturoti et al., 1986; Jeje, 1992; Adeyemo et al., 1994; Banyighi et al., 2001; Eyo & Olatunde, 2001; Ovie & Ovie, 2002; Omeji et al., 2013; Emere & Dibal, 2014). Clarias gariepinus is generally considered as one of the most important tropical catfish species for aquaculture in West Africa (Skelton & Teugels, 1992). The Food and Agriculture Organisation describes the *C. gariepinus* as a large size African catfish (FAO, 2010). Clarias spp. inhabit calm fresh water ranging from lakes, streams, rivers, swamps to flood plains many of which are subject to seasonal drying. The catfish survive during the dry

season due to the possession of accessory air breathing organ (Bruton, 1979; Clay, 1979; Akinsanya & Otubanjo, 2006; Ayanda & Egbamuno, 2012). Clarias gariepinus is considered to hold great prospect for fish farming in Nigeria (Adewumi & Olaleye, 2011). The wide geographical spread, high growth rate and the resistance to handling and stress has made C. gariepinus well valued in a wide number of African countries (Enas et al., 2013). In most part of the world, fish production is mainly from the wild. As the world population grows, fish resources are being depleted at an increasing rate as a result of environmental degradation, over harvesting, pollution thus fish production could no longer meet the demand of the growing population. This had led to increase in the involvement of stakeholders in aquaculture. This method has also been plagued by the problems of overcrowding, poor environmental conditions and pollution which often result in reduced immunity of fish and higher susceptibility to parasites and diseases (Murray, 2005; Biu et al., 2014). Like humans and other animals, fishes suffer from various disease and parasite infections (Bamidele, 2015). Parasitic diseases of fish are very common all over the world and are of particular importance in the tropics (Roberts & Janovy, 2009; Soliman & Nasr, 2015). Various parasites are associated with C. gariepinus in the wild and cultured environment where they cause morbidity, mortality and economic losses in aquaculture practice in various parts of the world (Subashinghe, 1995; Biu et al., 2013). There is an increasing awareness of the importance of parasitic diseases as one of the major detrimental factors in fish farming (Paperna, 1996; Keremah & Inko-Tariah, 2013). However, in Abuja, there is a paucity of information on the parasitic status of C. gariepinus. Therefore, this study sought to determine the prevalence of gastrointestinal helminth parasites in the study area with the view of quantifying the helminthic burden and to evaluate the relationship between infection, the sex, weight and length of C. gariepinus.

Materials and Methods

Study area

The study was conducted in three randomly selected Area Councils of the Federal Capital Territory, Abuja Nigeria – Gwagwalada, Kuje and Abuja Municipal. Abuja is located in the North central region of Nigeria with a land area of 8,000km². It lies between the Latitude of 8°25″ and 9°25″N and Longitude 6°45″ and 7°45″E. It is bounded to the North by Kaduna and Niger States, to the South by Kogi State, East by Nasarawa State and West by Niger State. From its Central location its vegetation combines the savannah grassland

type of the North and middle belt with the tropical rain forest type of the South of Nigeria (Dan-Kishiya *et al.*, 2013).

Sample collection and identification

From April to July 2015, 83 catfish specimens were randomly purchased live from the local fishermen in the three selected Area Councils and were transported live in a 25 litre plastic container containing water to the Parasitology Laboratory, Faculty of Veterinary Medicine, University of Abuja, where they were sorted according to different sizes. Identification of the fishes was done based on external features as described by Idodo-Umeh (2003). Lengths and weights of the fishes were measured using a ruler calibrated in centimetre (cm) and digital weighing balance (Electronic Kitchen Scale, QE-KE-4), respectively. The sexes of the fishes were identified by visual examination of the urinogenital system.

Dissection and Examination for parasite

The fishes were immobilized by cervical dislocation for easy handling prior to dissection on a dissecting board. The fishes were dissected through the abdomen by making a longitudinal slit on the ventral surface from the anus to a point level with the pectoral fins using a surgical blade. The alimentary tract was isolated stretched out and grouped into oesophagus, stomach and intestine. Sections were placed into three separate Petri dishes containing 0.6% saline. Each section was slit longitudinally and examined for parasites under a dissecting microscope. Parasites found were counted, fixed and preserved in 10% formalin (Frimeth, 1994).

Identification of parasites

Nematodes were cleared with lactophenol while the cestode and trematodes were stained overnight with a weak Ehrlich's haematoxylin solution and passed through graduated alcohol (30, 50, 70, 90% and absolute) for 45 min to dehydrate, cleared in methylsalicylate. The parasites (nematodes, cestode and trematodes) were mounted on a slide in Canada balsam. Parasites were identified using technique described by Chilton *et al.*, 1995, Lichtenfels *et al.*, 1994, Cheng (1973), Soulsby (1982), Paperna (1980; 1996), Williams & Jones (1994).

Statistical analysis

Statistical Package for the Social Science (SPSS) was used for the data analysis. The overall prevalence of the parasitic infection was expressed in percentage. Data were also presented in tabulated and chart forms. Chi square was used to compute and arrived at statistical decision. P<0.05 was considered significant.

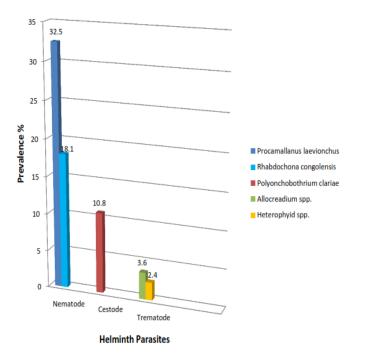
Results

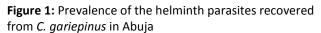
Out of the 83 *Clarias gariepinus* examined, 56 were infected, giving a prevalence of 67.5%.

The gastrointestinal helminth parasites recovered comprised of two species of nematodes-Procamallanus laevionchus (32.5%) and Rhabdochona congolensis (18.1%); a species of cestode- Polyonchobothrium clariae (10.8%); and two species of trematodes- Allocreadium spp. (3.6%) and Heterophyidae spp. (2.4%) (Fig.1). The nematodes had a prevalence of 50.6%, trematodes 6.0% and the only cestode had a prevalence of 10.8%. The helminths recovered were found to parasitize the stomach and intestinal lumen, the latter being more affected.

It was observed that the male *C. garipinus* had higher percentage prevalence (67.9%) than the female (67.3%) (Fig.2).

Fishes with standard length range of 20-30cm were most infected with a prevalence of 82.4%. This was followed by fishes within the length range of 30-40cm with a prevalence rate of 65.0%. Fishes within the range of 40-50cm had the least prevalence rate of 61.5% (Table 1).


The fish with body weight range between 500-600g has the highest rate of infection, with prevalence of 78.6%. The lowest prevalence rate of 58.8% was recorded in body weight range of 600-700g (Table 2).


Table 1: Size variation in the prevalence of gastrointestinal helminth infection in C. gariepinus

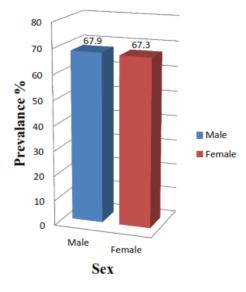

Standard	Number of fish	Number of fish	Prevalence (%)
Length (cm	Examined	infected	
20 – 30	17	14	82.4
30 – 40	40	26	65.0
40 – 50	26	16	61.5
Total	83	56	

Table 2: Weight variation in the prevalence of gastrointestinal helminth infection in C. gariepinus

		0	31
Body weight (g)	Number examined	Number infected	Prevalence (%)
200 – 300	5	3	60.0
300 – 400	13	9	69.2
400 – 500	24	16	66.7
500 – 600	14	11	78.6
600 – 700	17	10	58.8
700 – 800	10	7	70.0
Total	83	56	

Figure 2: Sexual variation in the prevalence of gastrointestinal helminth infection in *C. gariepinus*

The result of the study indicated that the association (P<0.05) between the prevalence of infection, sex, length and weight of the host was not statistically significant (χ^2 = 0.00289, 2.24 and 1.55; degree of freedom= 1, 2 and 5 respectively).

Discussion

The results of this work revealed that helminth parasites are prevalent in the C. gariepinus sampled in Abuja. The helminth parasites identified are comprised of 3 groups, namely Nematoda, Cestoda and Trematoda. nematodes, Procamallanus laevionchus and Rhabdochona congolensis, the cestode, Polyonchobothrium clariae, and the trematodes Allocreadium spp. and Heterophyidae spp. were recovered. This is in conformity with other researchers. Dan-kishiya & Zakari (2007) identified the Cestoda, Nematoda and Trematoda, in wild C. gariepinus in Gwagwalada, Abuja. Salawu et al. (2013) recorded the nematode Procamallanus laevionchus and the cestode Polyonchobothrium spp. in the digestive tracts of Clarias gariepinus from Ogun River and Asejire Dam in south-west Nigeria. Aliyu & Solomon (2012) also reported the nematode Procamallanus laevionchus and the cestode Polyonchobothrium clariae in C. gariepinus from lower Usman Dam, Abuja. Yakubu et al. (2002), found C. gariepinus infected by Procamallanus laevionchus in River Uke, Plateau State.

The overall prevalence of helminth parasites in this study was high (67.5%) similar to what was recorded in the same area by Dan-kishiya & Zakari (2007), Dan-kishiya et al. (2013). Other researchers in Nigeria such as Anosike et al. (1992) recorded a prevalence rate of 59.8%, Salawu et al. (2013) reported a prevalence rate of 75%, Onwuliri & Mgbemena (1987) reported a prevalence of 63.0% in wild population of *C. gariepinus* and 59.8% in cultured *C. gariepinus* in Jos, Plateau State.

Difference in prevalence of parasites in fish may be due to many factors. Williams and Jones (1994) suggested that parasitism differs in various aquatic ecosystems and this is determined by the interaction between biotic and abiotic factors. Fish species in good environmental conditions rarely come down with diseases (Oswald & Hulse, 1992). Reports have shown that helminths are generally found in all freshwater fishes, with their prevalence and intensity dependent on factors of parasite species and their biology, host and its feeding habits, physical factors and hygiene of the water body, and presence of intermediate hosts where necessary (Doreen et al., 2009; Shukerova et al., 2010; Hussen et al., 2012). Thus, the high the two sexes. Factors such as contaminated water availability of the intermediate host prevalence recorded in this study may be due to the polluted water-bodies, environmental conditions such as high temperature, the host and its feeding habits and the availability of intermediate host (copepods, insects, molluscs etc.) which harbours the infective larval stage of some of these helminth parasites making them available to fishes in the water.

The higher prevalence of nematodes (50.6%) than cestode (10.8%) and trematodes (6.0%) revealed that nematodes were the commonest infection of catfish (*C. gariepinus*) on sale in Abuja and this is in conformity with the findings of Aliyu & Solomon (2012). Though some earlier works reported that Acanthocephalan was the commonest parasites of fresh water fishes in the tropics, none was discovered in this research. Mgbemena (1983) reported high prevalence of Acanthocephalans in fish during the dry season. The absence of acanthocephalan in this research could probably be due to the fact that it was carried out during the rainy season.

The earlier work of Goselle *et al.* (2008) and few others showed that helminths have preference for region of attachment in the alimentary canal of fish. In this study, the distribution of gastrointestinal helminth parasites in the fishes showed a clear preference for the intestine and stomach as sites of attachment which could be attributed to the availability of food in these regions. The highest prevalence of parasites in the intestine implies that it is a more preferred predilection site; this could be due to the favourable conditions that enhance their survival (Owolabi, 2008). Similar finding were reported by Auta *et al.* (1999) and Emere (2000), Aliyu & Solomon (2012).

The nematodes were recovered from both the stomach and intestine, whereas the cestode showed preference for the intestine. Nematodes have relatively developed alimentary canal and could easily move around any area of the host alimentary canal to feed on digested and semi-digested food, whereas, cestodes lack alimentary system and are dependent on digested food of the host which is then absorbed through the body surfaces (Owolabi, 2008). These could probably account for their preference for these sites.

The result showed a prevalence of 67.9% for the male whereas the female was 67.3%. There was no statistical significant difference in the prevalence of helminth parasite infection in the sexes of fishes. This is in contrast with reports by Aliyu & Solomon (2012); Emere (2000) and Onwuliri & Mbgemena (1987) who recorded significance difference in the prevalence of infection between

harbouring the infective larval stage, predisposes both sexes to risk of acquiring the infection while feeding.

It was observed that fishes of standard length range of 20-30cm (82.4%) were more infected than those with length of 30-40cm (65.0%) and longer fishes of 40-30cm (61.5%). The prevalence of infection was higher in short fishes than in long fishes. Akinsanya *et al.* (2007) attributed this to the random selection and low level of immunity in the small sized fish.

Many parasites have been reported in different species of fish, but only a few species have the capacity to infect humans (Adams *et al.*, 1997). Paperna (1998) opined that health hazards associated with fish culture may be broadly classified into two groupings: firstly, resulting from the consumption of fish products and secondly, resulting from the aquatic environment itself. The list of potential fish-borne parasitic zoonoses includes anisakiasis (due to *Anisakis simplex* larvae and *Contracaecum* spp.), liver fluke diseases such as clonorchiasis, opisthorciasis, and other intestinal trematodiasis (the heterophyids and the echinostomes) and diphylobothriasis.

Worthy of note, was the identification of Heterophid fluke in this study which has not being previously reported in Nigeria and poses a great zoonotic threat. However, the examination did not include procedure in this study examination for parasite larval stages, especially for the metacercariae of heterophids, which are the most likely to have zoonotic potential. There is lack of documented reports on human diseases acquired from fish in Nigeria. But there is report of human trematodiasis in Egypt caused by the digenetic trematodes of the families Heterophyidae. Heterophyids constitute a public health problem wherever people eat raw, salted or otherwise undercooked fish containing metacercariae (Paperna 1996; Centers for Disease

References

Adams AM, Murrell KD & Cross JH (1997).

Parasites of fish and risks to public health.

Revue Scientifique et technique-office international des epizooties, 16(2): 652-660.

Adewumi AA, Olaleye VF (2011). Catfish culture in Nigeria: Progress, prospects and problems. *African Journal of Agricultural Research*, **6**(6): 1281-1285.

Adeyemo AA, Oladosu GA & Ayinla AO, (1994).

Growth and survival of fry of African catfish species, Clarias gariepinus, Heterobranchus bidorsalis and Heteroclarias reared on Moina dubia in

Control and Prevention, 2013; Madsen et al., 2015). Heterophyidae was reported frequently to infect humans in Egypt. Symptoms of the infection include abdominal discomfort, nausea, headache, vomiting, diarrhoea and in severe cases, dysentery. In the far-east, heterophylasis is a serious disease and may be fatal due to lesions in the heart, liver, lungs and the central nervous system (Paperna, 1998; Centers for Disease Control and Prevention, 2013). The seafood industry in collaboration with government agencies can implement different safety programmes to minimise these risks, including good manufacturing practices (GMPs) and hazard analysis and critical control point (HACCP) systems (Adams et al., 1997).

In conclusion, the present study shows the prevalence of gastrointestinal helminths with heavy parasitic burden in C. gariepinus sampled in Abuja. A further study to examine the larval stages of helminths especially the metercercaria of Heterophyids is advocated to forestall the zoonotic consequences in human who consume the fish as a source of protein (Massoud et al., 1981). Since it has been observed that helminth parasite infection of fish affects its productivity, marketability, palatability, death of a good number of fishes especially in the wild as well as the potential zoonotic effect on the consumers, it is therefore necessary to develop effective control measures and good culinary practices should be adopted to decimate the potential risks to human health (Onwuliri et al., 1989; Anosike et al., 1992).

Acknowledgement

The authors would like to thank the Laboratory technologists, Department of parasitology and Entomology, Faculty of Veterinary Medicine, University of Abuja for their immense support during the course of this research work.

comparison with other first food sources. *Aquaculture*, **119**(1): 41-45.

Ahmad MT (2014). Effect of *Mangifera indica* L. (Mango) Kernel on Clarias gariepinus (African catfish) Fingerlings Infected with *Aeromonas caviae* (Doctoral dissertation). Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria. Pp. 1-12.

Akinsanya B & Otubanjo OA (2006). Helminth Parasites of *Clarias gariepinus* (Clariidae) in Lekki Lagoon, Lagos, Nigeria. *Revista de Biologia Tropical*, **54**(1): 93-99.

Akinsanya B, Otubanjo OA & Hassan AA, (2007). Helminth parasites of *Malapterurus*

- electricus Malapteruridae from Lekki Lagoon, Lagos, Nigeria. Journal of American Science, **3**(3): 1-5.
- Aliyu MD & Solomon JR, (2012). The intestinal parasite of *Clarias gariepinus* found at lower Usman Dam, Abuja. *Researcher*, **4**(9): 38-44.
- Anosike JC, Omoregie E, Ofojekwu PC & Nweke IE (1992). A survey of Helminths parasites of *Clarias gariepinus* in Plateau State. *Nigeria Journal of Aquatic Sciences*, **7**(1): 39-43.
- Auta J, Oniye SJ & Adakole JA (1999). The helminth parasites of the Gastro-Intestinal tract of *Synodontis* species in Zaria, Nigeria. Zuma: *Journal of Pure and Applied Sciences*, **2**(2): 47-53.
- Ayanda, OI & Egbamuno E (2012). A Histopathological examination of the liver and gills of *Clarias gariepinus* treated with glyphosate. *Environmental Research Journal*, **6**(3): 228-234.
- Bamidele A (2015). A two fish species study of the parasitic helminth fauna of *Synodontis filamentosus* (BOULENGER, 1901) and *Calamoichthys calabaricus* (SMITH, 1865) From Lekki Lagoon, Lagos, Nigeria. *Ife Journal of Science*, **17**(1): 97-108.
- Banyighi HA, Oniye SJ, Balogun JK & Auta J (2001). Feed utilization and growth of juvenile catfish (*Clarias gariepinus*) fed heat treated Bambara groundnut [*Vigna subteranea* Verde, (L) meal. *Journal of Tropical Biosciences*. **1** (1): 55-61.
- Biu AA, Diyaware MY, Yakaka W & Rita DJ (2014).
 Incidence of Parasites of *Clarias*gariepinus (Burchell, 1822) Caught from
 Lake Alau, Maiduguri, Borno State,
 Nigeria. Nigerian Journal of Fisheries and
 Aquaculture. 2(1): 74-80.
- Bruton MN (1979). The breeding biology and early development of *Clarias gariepinus* (*Pisces claridae*) in Lake Sibaya, South Africa, with a review of breeding species of the subgenus *Clarias* (*clarices*). *Transactions of the Zoological Society of London*, **35**(1):1-45.
- Bruton MN (2010). The food and feeding behaviour of *Clarias gariepinus* (Pisces, Clariidae) in lake Sibaya, South Africa, with its emphasis on its role as a predator of cichlids. *Transactions of the Zoological Society.* **35** (1): 47.
- Centers for Disease Control and Prevention (2013).

 DPDx Laboratory Identification of
 Parasitic Diseases of Public Health
 Concern (Heterophylasis). 1600 Clifton
 Road Atlanta, GA 30329-4027, USA 800-

- CDC-INFO (800-232-4636) TTY: (888) 232-6348 Contact CDC-INFO. http://www.cdc.gov/dpdx/, retrieved 12-07-2016.
- Cheng T (1973). General Parasitology. Academic press, New York, USA. Pp 965.
- Clay D (1979). Population biology, growth and feeding of the African Catfish, *Clarias gariepinus*, with special reference to juveniles and their importance in fish culture. *Archiv für Hydrobiologie*, **87**(4): 453-482.
- Coche AG, Haight BA & Vincke MMJ (1994).

 Aquaculture developmet research in subSaharan Africa. FAO/CIFA Tecunical, Paper
 No. 23.
- Chilton NB, Gasser RB & Beveridge I (1995).

 Differences in a ribosomal DNA sequence of mor-phologically indistinguishable species within the *Hypodontus macropi* complex (Nematoda: Strongyloidea).

 International Journal of Parasitology.

 25(5): 647-651.
- Dan-kishiya AS & Zakari M (2007). Study on the gastrointestinal helminth parasites of *Clarias gariepinus* (Tuegels) in Gwagwalada, FCT, Nigeria. *BEST Journal*. **4**(2): 79-81.
- Dan-kishiya AS, Oboh A & Usman BI (2013). The prevalence of Helminth parasites in the gastro-intestinal tract of wild African sharptooth catfish *Clarias gariepinus* (Siluriformes: Clariidae) in Gwagwalada, Nigeria. *Research Journal of the Costa Rican Distance Education University*, **5**(1): 83-87.
- Doreen ZM, Chakanesta C & Phumuzile Y (2009).

 Observation on the helminth parasite of fish in Insukamini Dam, Zimbabwe.

 Research Journal of Agriculture and Biological Science, 5(5): 782-785.
- Emere MC (2000). Parasitic infection of the Nile prech (Lates niloticus) in River Kaduna. Journal of Aquatic Sciences. 15: 51-54.
- Emere MC & Dibal DM (2014). Diseases of a (*Clarifies gariepinus*) fresh water fish from river Kaduna, Nigeria. *World Rural Observations*, **6**(2): 77-81.
- Enas A, Abd El Hafez, Doaa M, Mokhtar, Alaa Sayed Abou-Elhamd & Hassan AHS (2013).

 Comparative Histomorphological Studies on Oesophagus of Catfish and Grass Carp.

 Journal of Histology, doi:10.1155/2013/858674.
- Eyo AA & Olatunde AA (2001). Protein and amino acid requirements of fish with particular reference to species cultured in Nigeria.

 In: Fish Nutrition and Fish Feed

- Technology (Eyo AA, editor). Fisheries Society of Nigeria (FISON) Lagos, Nigeria. Pp. 58-71.
- FAO (2010). Cultured Aquatic Species Information Programme. Text by Pouomogne, V. In: FAO Fisheries and Aquaculture Department. Rome, Italy. http://www.fao.org/fishery/culturedspecies/Clarias_gariepinus/en, retrieved 18-05-2016.
- Faturoti EO, Balogun AM & Ogwu LLC (1986).

 Nutrient utilization and growth responses of Clarias lazera fed different dietary protein levels. Nigerian Journal of Applied Fisheries and Hydrobiology, 1(1): 41-45
- Frimeth J (1994). General Procedures for Parasitology. In: Suggested procedures for the detection and identification of certain finfish and shellfish pathogens, (Thoesen J, editor). Fourth edition, Fish Health Section, Bethesda, MD: American Fisheries Society. Pp 5-6.
- Goselle O N, Shir GI, Udeh EO, Abelau M & Imandeh GN (2008). Helminth parasites of Clarias gariepinus and Tilapia zilli at Lamingo Dam, Jos. Nigeria. Science World Journal, 3(4): 23-27.
- Hussen A, Tefera M & Asrate S (2012).
 Gastrointestinal helminth parasites of
 Clarias gariepinus (Catfish) in Lake
 Hawassa Ethiopia. Scientific Journal of
 Animal Science, 1(4): 131-136.
- Idodo-Umeh G (2003). Freshwater Fishes of Nigeria (Taxonomy, Ecological Notes Diet and utilization). Idodo-Umeh Publishers, Benin, Nigeria. Pp. 232.
- Jeje YC (1992). Post larval feeding of *Clarias* gariepinus on cultured zooplankton and artemia diets. *Proceedings of the 10th* Annual Conference of the Fisheries Society of Nigeria (FISON), Abeokuta, Nigeria. 16—25 Nov. pp.129-135.
- Keremah RI & Inko-Tariah MB (2013). Comparative study of ectoparasites on Nile tilapia (*Oreochromis niloticus*) cultured under integrated and unintegrated pond systems. *African Journal of Biotechnology*, **12**(19): 2711.
- Khalil LF & Polling L (1997). Check list of the Helminth parasites of African Freshwater fishes. Seminar Paper of Department of Zoology/Biology, University of the North, Sovenga, South Africa. Pp. 189.
- Komatsu K & Kitanishi K (2015). Household Protein Intake and Distribution of Protein Sources in the Markets of Southern Ghana: A Preliminary Report. *African Study Monographs.*, **51**(3): 157-173.

- Lichtenfels JR, Pilitt PA & Hoberg EP (1994). New morphological characters for identifying individual speciments of *Haemonchus* spp. (Nema-toda: Trichostrongyloidea) and a key to species in ruminants of North America. *Journal of Parasitology*. **80**(1): 107-119
- Madsen H, Dung BT, Viet NK, Dalsgaard A & Van PT (2015). The role of rice fields, fish ponds and water canals for transmission of fishborne zoonotic trematodes in aquaculture ponds in Nam Dinh Province, Vietnam. *Parasites & vectors*, 8(1): 1-11.
- Massoud J, Jalali H & Reza M (1981). Studies on trematodes of the family *Heterophidae* (Odhner, 1914) in Iran; Preliminary epidemiological survey in man and carnivores in Khuzestan. *Journal of Helminthology*, **55**(4): 255-260.
- Micah JC (1973). Study of fish populations the Ubangi tentative selection and adaptation of some species has the pond of pisceculture. Technical Center for Tropical Forest, Nogent Sur Marne. Pp. 100.
- Mgbemena MO (1983). Parasitic Fauna of Some Cichlids and Clariids in Jos Plateau. *M.Sc. Thesis.* Department of Zoology, Faculty of Natural Science, University of Jos. Pp. 1-58.
- Murray AG (2005). A framework for understanding the potential for emerging diseases. In: aquaculture. *Preventive Veterinary Medicine*, **67**(2-3): 223-235.
- Omeji S, Solomon SG & Uloko C (2013).

 Comparative study on the Endo-parasitic infestation in Clarias gariepinus collected from earthen and concrete ponds in Makurdi, Benue State, Nigeria. *Journal of Agriculture and Veterinary Science*, **2**(1).
- Onwuliri COE & Mgbemena MO (1987). The parasite fauna of some fresh water fish from Jos, Plateau State, Nigeria. *Journal of Applied Fisheries and Hydrobiology*, **2**(1): 33–37.
- Oswald E & Hulse JE (1982). Fish aquaculture and fish disease in South East Africa, Report of a workshop held in Jakarta, Indonesia. Pp 79.
- Ovie SI & Ovie SO (2002). Fish larval rearing: the effect of pure/mixed Zooplankton and artificial diet on the growth and survival of *Clarias anguillaris* (Linnaeus, 1758) larvae. *Journal of Aquatic Science*, **17**(1): 67-73.
- Owolabi OD (2008). Endoparasitic Helminths of the Upside- Down Catfish, Synodontis membranaceus (Geoffroy Saint Hilarie) in Jebba Lake, Nigeria. International

- Journal of Zoological Research, **4**(3):181-188.
- Paperna I (1980). Parasites, infections and diseases of fish in Africa, CIFA Tech. Paper, 7, FAO, Rome, Italy. Pp. 200.
- Paperna I (1996). Parasites infections and diseases of fishes in Africa -An update (CIFA Technical) paper 31. Pp 1-220.
- Paperna I (1998). Parasites, Infections and Diseases of Fish in Africa: An update. FAO/CIFA Technical Paper No. 31. Pp 157-200.
- Roberts LS & Janovy J (Jr.) (2009). Foundations of Parasitology, 8th edition. McGraw-Hill International Editions, Boston. pp. 502.
- Salawu MT, Morenikeji OA, Sowunmi AA & Odaibo AB (2013). Comparative survey of helminth parasites of *Clarias gariepinus* and *Clarias pachynema* from the Ogun River and Asejire Dam in south-west Nigeria, *International Journal of Fisheries and Aquaculture*, **5**(1): 7-11.
- Shukerova S, Kirin D & Hanzelova V (2010). Endohelminth communities of the perch, Perca fluviatilis (Perciformes, Percidae) from Srebama Biosphere Reserve, Bulgaria. Helminthologia. **42**(2): 99-104.
- Skelton PH & Teugels GG (1992). Neotype
 Designation for the African Catfish Clarias
 gariepinus (Burchell 1822) (Pisces:
 Siluroidei: Clariidae). *Ichthyological*

- Bulletin of the JLB Smith Institute of Ichthyology, **56**(2): 1-8.
- Soliman NF & Nasr SM (2015). Metal contents in common edible fish species and evaluation of potential health risks to consumers. *Journal of Coastal Life Medicine*, **3**(12): 956-961.
- Soulsby ELJ (1982). Helminths, Arthropods and protozoans of Domesticated Animals.

 Seventh edition. Bailliere Tindall, London, UK. Pp. 809.
- Subasinghe R (1995). Diseases control and health management in aquaculture. FAO Aquaculture Newsletter 9. Pp 8-11.
- Viveen WJAR, CJJ Richter, PGWJ Van Oordt, JAL Janssen & EA Huisman (1985). Practical manual for the culture of the African catfish (*Clarias gariepinus*). The Netherlands Ministry for Development Cooperation, Section for Research and Technology, The Netherlands. Pp 128.
- Williams H & Jones A (1994). Parasitic worms of fish. Taylor and Francis, Bristol, UK. Pp. 593.
- Yakubu DPE, Omoregie E, Wade JW & Faringoro DU (2002). A comparative study of gut helminths of *Tilapia Zilli and Clarias gariepinus* from river Uke, Plateau state, Nigeria. *Journal of Aquatic Science*, **17**(2): 137-139.